INSTALLATION MANUAL

SINGLE PACKAGE AIR CONDITIONER/ELECTRIC

MODELS: PCE4 Series

(2-5 Ton)

LIST OF SECTIONS

GENERAL INFORMATION 1	OPERATION
SAFETY	MAINTENANCE
MODEL NUMBER NOMENCLATURE	TYPICAL WIRING DIAGRAMS18
INSTALLATION 2	START UP SHEET
AIRFLOW PERFORMANCE	

LIST OF FIGURES

Component Location 3	Single Point Wiring Kits	. 12
Unit 4 Point Load Weight4	Measuring External Static Pressure	. 17
Unit Dimensions	Connection Wiring Diagram - 2 to 3 Ton Models	. 18
Bottom Duct Dimensions (inches)	Ladder Wiring Diagram - 2 to 3 Ton Models	. 19
Rear Duct Dimensions (inches) 6	Connection Wiring Diagram - 3.5 to 5 Ton Models	. 20
Typical Field Control Wiring Diagram For Air Conditioner Models 7	Ladder Wiring Diagram - 3.5 to 5 Ton Models	. 21
Typical Field Power Wiring Diagram7	R-410A Quick Reference Guide	. 22

LIST OF TABLES

Unit Limitations	Physical Data	13
Weights and Dimensions		
Unit Dimensions	Airflow - Bottom Duct Application	15
Unit Clearances,		
Electrical Data - 208/230-1-60 - Single Source Power	Electric Heat Multipliers	15
Single Point Connection Kit Required 8	Additional Static Resistance	16
Electrical Data for 208-1-60 Multi Source Power	Thermostat Signals	16
Electrical Data for 230-1-60 Multi Source Power	3 · · · · · · · · · · · · · · · · · · ·	

SECTION I: GENERAL INFORMATION

PCE units are factory assembled air conditioners designed for outdoor installation on a roof top or a slab. Field-installed electric heater accessories are available to provide electric heat.

The units are completely assembled on rigid, removable base rails. All piping, refrigerant charge, and electrical wiring is factory installed and tested. The units require only electric power and duct connections at the point of installation.

SECTION II: SAFETY

This is a safety alert symbol. When you see this symbol on labels or in manuals, be alert to the potential for personal injury.

Understand and pay particular attention to the signal words ${\bf DANGER},$ ${\bf WARNING},$ or ${\bf CAUTION}.$

DANGER indicates an **imminently** hazardous situation, which, if not avoided, **will result in death or serious injury**.

WARNING indicates a **potentially** hazardous situation, which, if not avoided, **could result in death or serious injury**.

CAUTION indicates a potentially hazardous situation, which, if not avoided <u>may result in minor or moderate injury.</u> It is also used to alert against unsafe practices and hazards involving only property damage.

▲ WARNING

Improper installation may create a condition where the operation of the product could cause personal injury or property damage. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Failure to carefully read and follow all instructions in this manual can result in furnace malfunction, death, personal injury and/or property damage. Only a qualified contractor, installer or service agency should install this product.

▲ CAUTION

This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes including, but not limited to building, electrical, and mechanical codes.

▲ WARNING

Before performing service or maintenance operations on unit. turn off main power switch to unit. Electrical shock could cause personal injury. Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual. For assistance or additional information consult a qualified installer, service agency or the gas supplier.

This system uses R-410A Refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system. Gage sets, hoses, refrigerant containers and recovery systems must be designed to handle R-410A. If you are unsure, consult the equipment manufacturer. Failure to use R-410A compatible servicing equipment may result in property damage or injury.

Due to system pressure, moving parts, and electrical components, installation and servicing of air conditioning equipment can be hazardous. Only qualified, licensed service personnel should install, repair, or service this equipment. Unlicensed personnel can perform basic maintenance functions of cleaning coils and filters and replacing filters.

Observe all precautions in the literature, labels, and tags accompanying the equipment whenever working on air conditioning equipment. Be sure to follow all other applicable safety precautions and codes includ-

Wear safety glasses and work gloves. Use quenching cloth and have a fire extinguisher available during brazing operations.

INSPECTION

As soon as a unit is received, it should be inspected for possible damage during transit. If damage is evident, the extent of the damage should be noted on the carrier's freight bill. A separate request for inspection by the carrier's agent should be made in writing.

REPLACEMENT PARTS

Contact your local Unitary Products parts distribution center for authorized replacement parts.

SECTION III: MODEL NUMBER NOMENCLATURE

PCE	4	Α	24	50	2	Х	1	Α
1	2	3	4		6		8	9

1. Model Family

PCE - packaged A/C with electric heat,

PHE - packaged with electric heat,

PCG - packaged A/C with gas heat,

PHG - packaged with gas heat,

2. Nominal Cooling Efficiency

4 = 14 SEER, 6 = 16 SEER, etc.

3. Cabinet Size

 $A = \text{small } 35 \times 51, B = \text{large } 45 \times 51$

4. Nominal Air Conditioning Cooling Capacity BTUx1000

24 = 24,000 BTU, etc.

Examples: PCE4B4221A is a packaged air conditioner, 14 SEER, 3-1/2 ton, large cabinet, 230 volt, single phase model, (first generation, first release)

5. Gas Heating Input BTU/Hr x 1000

050 = 50,000 BTU/Hr. input, blank = electric heat

6. Voltage-Phase-Frequency

2 = 208/230-1-60, 3=208/230-3-60, 4 = 460-3-60

7. NOx Approval

X = low-NOx, blank = not low-Nox

8. Generation Level

1 = first generation

9. Revision Level

A = original release, B = second release

SECTION IV: INSTALLATION

LIMITATIONS

These units must be installed in accordance with the following national and local safety codes.

- National Electrical Code ANSI/NFPS No. 70 or Canadian Electrical Code Part 1, C22.1 (latest editions).
- Local plumbing and waste water codes and other applicable local codes.

Refer to Table 8 for unit physical data and to Tables 5-7 for electrical

If components are to be added to a unit to meet local codes, they are to be installed at the dealer's and/or the customer's expense.

Size of unit for proposed installation should be based on heat loss/heat gain calculations made in accordance with industry recognized procedures such as the Air Conditioning Contractors of America (manual J).

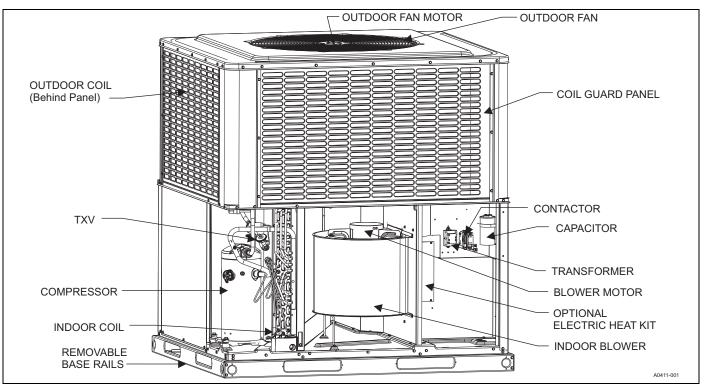


FIGURE 1: Component Location

Table 1: Unit Limitations

		Unit Limitations									
Model	Unit Voltage	Applied	l Voltage	Outdoor DB Temp							
		Min	Max	Max (°F)							
A24	208/230-1-60	187	252	125							
A30	208/230-1-60	187	252	125							
A36	208/230-1-60	187	252	125							
A42	208/230-1-60	187	252	125							
B48	208/230-1-60	187	252	125							
B60	208/230-1-60	187	252	125							

LOCATION

Use the following guidelines to select a suitable location for these units:

- 1. Unit is designed for outdoor installation only.
- Outdoor coils must have an unlimited supply of air. Where a choice of location is possible, position the unit on either north or east side of building.
- 3. Suitable for mounting on roof curb.
- 4. For ground level installation, a level pad or slab should be used. The thickness and size of the pad or slab used should meet local codes and unit weight. Do not tie the slab to the building foundation.
- Roof structures must be able to support the weight of the unit and its options/accessories. Unit must be installed on a solid, level roof curb or appropriate angle iron frame.
- Maintain level tolerance to 1/8" across the entire width and length of unit.

A WARNING

Do not permit overhanging structures or shrubs to obstruct outdoor air discharge outlet.

CLEARANCES

All units require certain clearances for proper operation and service. Refer to Table 4 for the clearances required for construction, servicing and proper unit operation.

RIGGING AND HANDLING

Exercise care when moving the unit. Do not remove any packaging until the unit is near the place of installation. Rig the unit by attaching chain or cable slings to the lifting holes provided in the base rails. Spreader bars, whose length exceeds the largest dimension across the unit, **MUST** be used across the top of the unit.

A CAUTION

Before lifting, make sure the unit weight is distributed equally on the rigging cables so it will lift evenly.

Units may be moved or lifted with a forklift. Slotted openings in the base rails are provided for this purpose.

A CAUTION

If a unit is to be installed on a roof curb other than a Unitary Products roof curb, gasket or sealant must be applied to all surfaces that come in contact with the unit underside.

A CAUTION

All panels must be secured in place when the unit is lifted. The outdoor coils should be protected from rigging cable damage with plywood or other suitable material.

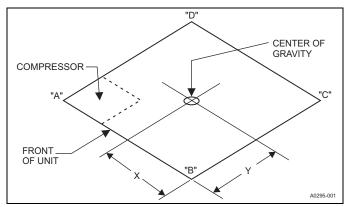


FIGURE 2: Unit 4 Point Load Weight

Table 2: Weights and Dimensions

Model	Weigh	t (lbs.)	Center o	of Gravity	4 Point Load Location (lbs.)						
	Shipping	Operating	х	Υ	Α	В	С	D			
A24	348	348 343 30 15		96	105	107	40				
A30	394	389	30	15	107	123	123	41			
A36	400	395 30 15		112	123	120	45				
A42	471	466	32	13	169	132	131	39			
B48	488 483		30	19 158		125	130	75			
B60	505 500		30	20	157	134	140	74			

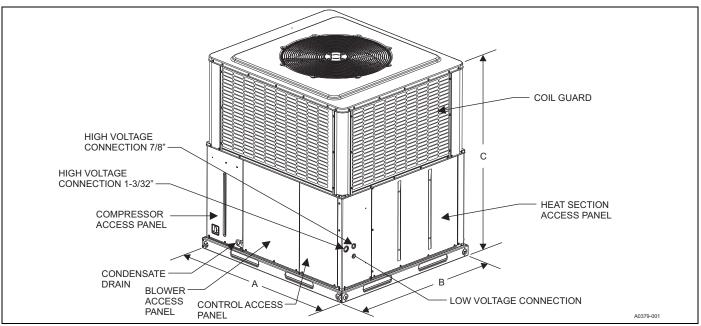


FIGURE 3: Unit Dimensions

Table 3: Unit Dimensions

Model		Dimensions									
Wodei	Α	В	С								
A24	51-1/4	35-3/4	47								
A30	51-1/4	35-3/4	49								
A36	51-1/4	35-3/4	49								
A42	51-1/4	35-3/4	49								
B48	51-1/4	45-3/4	53								
B60	51-1/4	45-3/4	55								

Table 4: Unit Clearances^{1,2}

Direction	Distance (in.)	Direction	Distance (in.)
Top ³	36	Power Entry (Right Side)	36
Side Opposite Ducts	36	Left Side	24
Duct Panel	0	Bottom ⁴	1

- 1. A 1" clearance must be provided between any combustible material and the supply air duct work.
- 2. The products of combustion must not be allowed to accumulate within a confined space and recirculate.
- $3. \ \ Units \ must \ be \ installed \ outdoors. \ Overhanging \ structures \ or \ shrubs \ must \ not \ obstruct \ condenser \ air \ discharge \ outlet.$
- 4. Units may be installed on combustible materials made from wood or class A, B or C roof covering materials only if factory base rails are left in place as shipped.

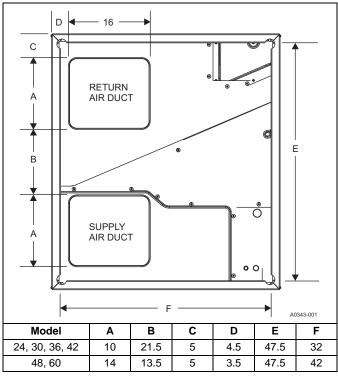


FIGURE 4: Bottom Duct Dimensions (inches)

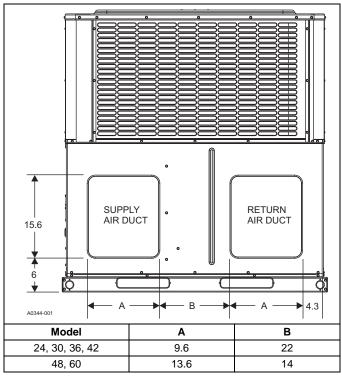


FIGURE 5: Rear Duct Dimensions (inches)

DUCTWORK

These units are adaptable to downflow use as well as rear supply and return air duct openings. To convert to downflow, use the following steps:

- 1. Remove the duct covers found in the bottom return and supply air duct openings. There are four (4) screws securing each duct cover (save these screws to use in Step 2).
- 2. Install the duct covers (removed in step one) to the rear supply and return air duct openings. Secure with the four (4) screws used in step one.
- 3. Seal duct covers with silicone caulk.

Duct work should be designed and sized according to the methods of the Air Conditioning Contractors of America (ACCA), as set forth in their Manual D.

A closed return duct system shall be used. This shall not preclude use of economizers or ventilation air intake. Flexible duct connectors are recommended in the supply and return duct work to minimize the transmission of vibration and noise.

When fastening duct work to the side duct flanges on the unit, insert the screws through the duct flanges only. DO NOT insert the screws through the casing. Outdoor duct work must be insulated and waterproofed

Be sure to note supply and return openings.

Refer to Figures 4 and 5 for information concerning rear and bottom supply and return air duct openings.

FILTERS

Proper filter size is very important. Filter size, type and pressure drop should always be considered during duct system design.

Single phase units are shipped without a filter or filter racks. It is the responsibility of the installer to secure a filter in the return air ductwork or install a Filter/Frame Kit.

A filter rack and high velocity filters are standard on three phase units.

Filters must always be used and must be kept clean. When filters become dirt laden, insufficient air will be delivered by the blower, decreasing your units efficiency and increasing operating costs and wear-and-tear on the unit and controls.

Filters should be checked monthly; this is especially important since this unit is used for both heating and cooling.

CONDENSATE DRAIN

A condensate trap must be installed in the condensate drain. The plumbing must conform to local codes.

DO NOT use Teflon tape or Pipe thread compound.

A CAUTION

Hand tighten only.

SERVICE ACCESS

Access to all serviceable components is provided at the following loca-

- · Coil guards
- · Unit top panel
- · Corner posts
- · Blower access panel
- · Control access panel · Indoor coil access panel
- · Compressor access panel

Refer to Figure 3 for location of these access locations and minimum clearances in Table 4.

A CAUTION

This system uses R-410A Refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system. Gage sets, hoses, refrigerant containers and recovery systems must be designed to handle R-410A. If you are unsure, consult the equipment manufacturer. Failure to use R-410A compatible servicing equipment may result in property damage or injury.

▲ WARNING

Wear safety glasses and gloves when handling refrigerants. Failure to follow this warning can cause serious personal injury.

Refer to Figure 14 for the R-410A Quick Reference Guide.

THERMOSTAT

The room thermostat should be located on an inside wall approximately 60" above the floor where it will not be subject to drafts, sun exposure or heat from electrical fixtures or appliances. Sealant should be used behind thermostat to prevent air infiltration. Follow manufacturer's instructions enclosed with the thermostat for general installation procedure. Color coded insulated wires (minimum #18 AWG) should be used to connect thermostat to unit. See Figure 6. Do not use power stealing thermostats.

POWER AND CONTROL WIRING

Field wiring to the unit must conform to provisions of the current N.E.C. ANSI/NFPA No. 70 or C.E.C. and/or local ordinances. The unit must be electrically grounded in accordance with local codes or, in their absence, with the N.E.C./C.E.C. Voltage tolerances which must be maintained at the compressor terminals during starting and running conditions are indicated on the unit Rating Plate and Table 1.

The wiring entering the cabinet must be provided with mechanical strain relief.+.

A fused disconnect switch should be field provided for the unit. If any of the wire supplied with the unit must be replaced, replacement wire must be of the type shown on the wiring diagram.

Electrical service must be sized properly to carry the load. Each unit must be wired with a separate branch circuit fed directly from the main distribution panel and properly fused.

Refer to Figures 6-8 for typical field wiring and to the appropriate unit wiring diagram for control circuit and power wiring information.

Unit comes wired for 230 volt power. If supply power is 208 volt, wires connected to the control transformer 230V tap must be moved to the 208V tap.

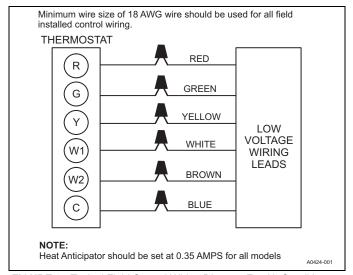


FIGURE 6: Typical Field Control Wiring Diagram For Air Conditioner Models

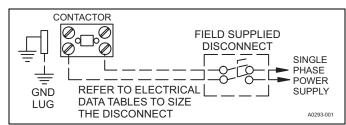


FIGURE 7: Typical Field Power Wiring Diagram

NOTICE

In some applications, the service disconnects on the electric heat kits must be rotated 180° so the up position of the disconnect is the ON position. This service disconnect orientation change is required by UL1995, Article 26.19 (in reference to all circuit breakers).

Table 5: Electrical Data - 208/230-1-60 - Single Source Power Single Point Connection Kit Required

				OD Fan	Blower	I	Electric	Heat O	ption			MCA ¹		Max Fuse ² or	
Model	Co	mpres	sor	Motor	Motor	Haatar Kit	Heate	er kW	Stamoo	Heater	Amps		nps)		er ³ Size
	RLA	LRA	MCC	FLA	FLA	Heater Kit	208	230	Stages	208	230	208	230	208	230
						none						16.0	16.0	20	20
						6HK16500206	1.8	2.2	1	8.7	9.6	15.6	16.7	20	20
PCE4A24	9	45	14	1.3	3.8	6HK16500506	3.6	4.4	1	17.3	19.1	26.4	28.7	30	30
FUL4A24	9	45	14	1.5	3.0	6HK16500806	5.8	7.1	1	27.9	30.9	39.6	43.3	40	45
						6HK16501006	7.2	8.8	1	34.6	38.3	48.0	52.6	50	60
						6HK16501306	9.4	11.5	2	45.2	50.0	61.2	67.3	70	70
						none						17.4	17.4	25	25
						6HK16500206	1.8	2.2	1	8.7	9.6	15.6	16.7	25	25
						6HK16500506	3.6	4.4	1	17.3	19.1	26.4	28.7	30	30
PCE4A30	10	57	15	1.3	3.8	6HK16500806	5.8	7.1	1	27.9	30.9	39.6	43.3	40	45
						6HK16501006	7.2	8.8	1	34.6	38.3	48.0	52.6	50	60
						6HK16501306	9.4	11.5	2	45.2	50.0	61.2	67.3	70	70
						6HK16501506	10.8	13.2	2	51.9	57.4	69.7	76.5	70	80
						none						21.4	21.4	30	30
						6HK16500206	1.8	2.2	1	8.7	9.6	15.6	16.7	30	30
PCE4A36	13	78	23	1.3	3.8	6HK16500506 6HK16500806	3.6 5.8	7.1	1	17.3 27.9	19.1 30.9	26.4 39.6	28.7 43.3	30 40	30 45
FCE4A30	13	70	23	1.3	3.0	6HK16501006	7.2	8.8	1	34.6	38.3	48.0	52.6	50	60
						6HK16501306	9.4	11.5	2	45.2	50.0	61.2	67.3	70	70
						6HK16501506	10.8	13.2	2	51.9	57.4	69.7	76.5	70	80
						none						29.1	29.1	45	45
					- - -	6HK16500506	3.6	4.4	1	17.3	19.1	28.4	30.7	45	45
		440				6HK16500806	5.8	7.1	1	27.9	30.9	41.6	45.3	45	50
						6HK16501006	7.2	8.8	1	34.6	38.3	50.0	54.6	50	60
PCE4A42	18	112	28	1.3	5.4	6HK16501306	9.4	11.5	2	45.2	50.0	63.2	69.3	70	70
						6HK16501506	10.8	13.2	2	51.9	57.4	71.7	78.5	80	80
						6HK16501806	13.0	15.9	2	62.5	69.1	84.9	93.2	90	100
						6HK16502006	14.4	17.6	2	69.2	76.5	93.3	102.4	100	110
						none						34.4	34.4	50	50
						6HK16500506	3.6	4.4	1	17.3	19.1	28.4	30.7	50	50
						6HK16500806	5.8	7.1	1	27.9	30.9	41.6	45.3	50	50
PCE4B48	22	117	34	1.7	5.4	6HK16501006	7.2	8.8	1	34.6	38.3	50.0	54.6	50	60
1 024840			04	1.7	0.4	6HK16501306	9.4	11.5	2	45.2	50.0	63.2	69.3	70	70
						6HK16501506	10.8	13.2	2	51.9	57.4	71.7	78.5	80	80
						6HK16501806	13.0	15.9	2	62.5	69.1	84.9	93.2	90	100
						6HK16502006	14.4	17.6	2	69.2	76.5	93.3	102.4	100	110
						none						39.2	39.2	60	60
						6HK16500506	3.6	4.4	1	17.3	19.1	30.4	32.7	60	60
						6HK16500806	5.8	7.1	1	27.9	30.9	43.6	47.3	60	60
PCE4B60	24	144	38	1.7	7.0	6HK16501006	7.2	8.8	1	34.6	38.3	52.0	56.6	60	60
						6HK16501306	9.4	11.5	2	45.2	50.0	65.2	71.3	70	80
į						6HK16501506	10.8	13.2	2	51.9	57.4	73.7	80.5	80	90
						6HK16501806	13.0	15.9	2	62.5	69.1	86.9	95.2	90	100
						6HK16502006	14.4	17.6	2	69.2	76.5	95.3	104.4	100	110

Minimum Circuit Ampacity.
 Maximum Over Current Protection per standard UL 1995.
 Fuse or HACR circuit breaker size installed at factory or field installed.

Table 6: Electrical Data for 208-1-60 Multi Source Power

	Co	mpres	cor	OD Fan	Blower	E	ectric Heat Op	otion					Multi 9	Source			
Model	CO	ilibies	3UI	Motor	Motor	Heater Kit	Heater kW	Stages	Heater Amps				Willia	Jource			
	RLA	LRA	MCC	FLA	FLA	rieater Kit	208	_	208	208	208	208	208	208	208	208	208
								•	sor Circuit		1			1			1
				ressor		Multi Source:		cuit #2 H		MCA ¹	MOP ²						
	Circui	t and i	Heat Ci	ircuits			Circuit #2 Heat Circuit #3 Heat		Amps		Amps Circuit #2		Allips		Amps	Allips	
			ı							Circu			1	Circu			uit #4
						none				16.0	20						
						6HK(0,1)6500206	1.8	1	8.7	16.0	20	10.8	15				
101		45		4.0		6HK(0,1)6500506	3.6	1	17.3	16.0	20	21.6	25				
A24	9	45	14	1.3		6HK(0,1)6500806	5.8	1	27.9	16.0	20	34.9	40				
						6HK(0,1)6501006	7.2	1	34.6	16.0	20	43.3	45				
						6HK16501306	9.4	2	45.2	16.0	20	37.7	40	18.8	20		
						6HK26501306	9.4	1	45.2	16.0	20	56.5	60				
						none				17.4	25						
						6HK(0,1)6500206	1.8	1	8.7	17.4	25	10.8	15				
						6HK(0,1)6500506	3.6	1	17.3	17.4	25	21.6	25				
4.6.5	4.5					6HK(0,1)6500806	5.8	1	27.9	17.4	25	34.9	40				
A30	10	57	15	1.3	3.8	6HK(0,1)6501006	7.2	1	34.6	17.4	25	43.3	45				
						6HK16501306	9.4	2	45.2	17.4	25	37.7	40	18.8	20		
						6HK16501506	10.8	2	51.9	17.4	25	43.3	50	21.6	25		
						6HK26501306	9.4	1	45.2	17.4	25	56.5	60				
						6HK26501506	10.8	1	51.9	17.4	25	64.9	70				
						none				21.4	30						
						6HK(0,1)6500206	1.8	1	8.7	21.4	30	10.8	15				
	A26 12 79				6HK(0,1)6500506	3.6	1	17.3	21.4	30	21.6	25					
						6HK(0,1)6500806	5.8	1	27.9	21.4	30	34.9	40				
A36 13	13	78	23	1.3	3.8	6HK(0,1)6501006	7.2	1	34.6	21.4	30	43.3	45				
						6HK16501306	9.4	2	45.2	21.4	30	37.7	40	18.8	20		
						6HK16501506	10.8	2	51.9	21.4	30	43.3	50	21.6	25		
						6HK26501306	9.4	1	45.2	21.4	30	56.5	60				
						6HK26501506	10.8	2	51.9	21.4	30	64.9	70				
						none		1		29.5	45						
						6HK(0,1)6500506	3.6	1	17.3	29.5	45	21.6	25				
						6HK(0,1)6500806	5.8	1	27.9	29.5	45	34.9	40				
						6HK(0,1)6501006	7.2	1	34.6	29.5	45	43.3	45				
						6HK16501306	9.4	2	45.2	29.5	45	56.5	40	21.6	20		
A42	18	112	28	1.7	5.4	6HK16501506	10.8	2	51.9	29.5	45	43.3	50	21.6	25		
						6HK16501806	13.0	2	62.5	29.5	45	52.1	40	26.0	40		
						6HK16502006	14.4	2	69.2	29.5	45	43.3	45	43.3	45		
						6HK26501306	9.4	1	45.2	29.5	45	56.5	60				
						6HK26501506	10.8	1	51.9	29.5	45	64.9	70				
						6HK26501806	13.0	1	62.5	29.5	45	78.1	80				
						6HK26502006	14.4	1	69.2	29.5	45	86.5	90				
						none				34.4	50						
						6HK(0,1)6500506	3.6	1	17.3	34.4	50	21.6	25				
						6HK(0,1)6500806	5.8	1	27.9	34.4	50	34.9	40				
						6HK(0,1)6501006	7.2	1	34.6	34.4	50	43.3	45				
						6HK16501306	9.4	2	45.2	34.4	50	56.5	40	21.6	20		
B48	22	117	34	1.7	5.4	6HK16501506	10.8	2	51.9	34.4	50	43.3	50	21.6	25		
-						6HK16501806	13.0	2	62.5	34.4	50	52.1	40	26.0	40		
						6HK16502006	14.4	2	69.2	34.4	50	43.3	45	43.3	45		
						6HK26501306	9.4	1	45.2	34.4	50	56.5	60				
						6HK26501506	10.8	1	51.9	34.4	50	64.9	70				
				_	6HK26501806	13.0	1	62.5	34.4	50	78.1	80					
						6HK26502006	14.4	2	69.2	34.4	50	86.5	90				

For notes, see Page 10.

Table 6: Electrical Data for 208-1-60 Multi Source Power (Continued)

	0-			OD Fan	Blower	EI	ectric Heat O	otion					NA141 C	Source			
Model	Co	mpres	sor	Motor	Motor	Heater Kit	Heater kW	Stones	Heater Amps				Williti	source			
	RLA	LRA	MCC	FLA	FLA	neater Kit	208	Stages	208	208	208	208	208	208	208	208	208
							Circuit #1	Compres	ssor Circuit								
				ressor		Multi Source:	Cir	cuit #2 F	leat	MCA ¹	MOP ²						
	Circui	it and I	Heat C	ircuits		muni oouroo.	***	cuit #2 F		Alliha		Allipa		Amps		Amps	
	1			•	1		Cir	cuit #3 F	leat	Circu		Circ	ıit #2	Circu	ıit #3	Circ	uit #4
						none				39.2	60						
						6HK(0,1)6500506	3.6	1	17.3	39.2	60	21.6	25				
						6HK(0,1)6500806	5.8	1	27.9	39.2	60	34.9	40				
						6HK(0,1)6501006	7.2	1	34.6	39.2	60	43.3	45				
						6HK16501306	9.4	2	45.2	39.2	60	56.5	40	21.6	20		
						6HK16501506	10.8	2	51.9	39.2	60	43.3	50	21.6	25		
B60	24	144	38	1.7	7.0	6HK16501806	13.0	2	62.5	39.2	60	52.1	40	26.0	40		
Боо	24	144	36	1.7	7.0	6HK16502006	14.4	2	69.2	39.2	60	43.3	45	43.3	45		
						6HK26501306	9.4	1	45.2	39.2	60	56.5	60				
						6HK26501506	10.8	1	51.9	39.2	60	64.9	70				
						6HK26501806	13.0	1	62.5	39.2	60	78.1	80				
						6HK26502006	14.4	1	69.2	39.2	60	86.5	90				
						6HK16502506	18.0	3	86.5	39.2	60	43.3	45	43.3	45	21.6	25
						6HK26502506	18.0	1	86.5	39.2	60	108.2	110				

^{1.} MCA = Minimum Circuit Ampacity.

Table 7: Electrical Data for 230-1-60 Multi Source Power

	2	mpres	sor	OD Fan		E	ectric Heat Op	otion					Multi 9	Source			
Model		iiipi es.	301	Motor	Motor	Heater Kit	Heater kW	Stages	Heater Amps				wuiti	Jource			
	RLA	LRA	MCC	FLA	FLA	Tioutoi Titt	230		230	230	230	230	230	230	230	230	230
									sor Circuit		1			1			,
		ource:		ressor		Multi Source:				MCA ¹ Amps	MOP ²						
	Circui	it and r	Teal C	icuits			Circuit #2 Heat Circuit #3 Heat			Circu	.14.114	•	.:. 40	Circuit #3		Circuit #4	
						2000		1	leat	16.0	20	Circu					
						none	2.2	1		16.0	20	12.0	 15				
						6HK(0,1)6500206	4.4	1	9.6 19.1	16.0	20	23.9	25				
A 2 4	0	45	11	4.0	2.0	6HK(0,1)6500506	7.1		-								
A24	9	45	14	1.3	3.8	6HK(0,1)6500806		1	30.9	16.0	20	38.6 47.8	40 50				
						6HK(0,1)6501006	8.8	1	38.3	16.0							
						6HK16501306	11.5	2	50.0	16.0	20	41.7	45	20.8	25		
						6HK26501306	11.5	1	50.0	16.0	20 25	62.5	70				
					none				17.4								
					6HK(0,1)6500206	2.2	1	9.6	17.4	25	12.0	15					
					6HK(0,1)6500506	7.1	1	19.1 30.9	17.4 17.4	25 25	23.9 38.6	25 40					
400	10	57	15	1.2	3.8	6HK(0,1)6500806	8.8	1			25 25		50				
A30	10	57	15	1.3	3.0	6HK(0,1)6501006 6HK16501306	11.5	2	38.3 50.0	17.4 17.4	25	47.8	45	20.8	25		
								2	50.0	17.4	25 25		45 50		25 25		
						6HK16501506	13.2 11.5		50.0	17.4	25 25	47.8 62.5	70	23.9			
						6HK26501306		1				6∠.5 71.7					
						6HK26501506	13.2	1	57.4	17.4 21.4	25 30		80				
						none 6HK(0,1)6500206	2.2	1	9.6	21.4	30	12.0	15				
						(, ,	4.4	1	19.1	21.4	30	23.9	25				
						6HK(0,1)6500506	7.1	1	30.9	21.4	30	38.6	40		_ 		
426	10	70	23	4.0	2.0	6HK(0,1)6500806	8.8	1	38.3	21.4	30	47.8	50		_ 	_ 	
ASO	A36 13 78	23	1.3	3.8	6HK(0,1)6501006 6HK16501306	11.5	2	50.0	21.4	30	41.7	45	20.8	25			
						6HK16501306 6HK16501506	13.2	2	50.0	21.4	30	47.8	45 50	23.9	25 25		
								-	21.4			70					
					6HK26501306	11.5	1	50.0		30	62.5						
F]		6HK26501506	13.2	2	57.4	21.4	30	71.7	80				

For notes, see Page 11.

^{2.} MOP = Maximum Over Current Protection device; must be HACR type circuit breaker or time delay fuse.

Table 7: Electrical Data for 230-1-60 Multi Source Power

	Co	mpres	sor	OD Fan		El	ectric Heat O	ption					Multi 9	Source			
Model			301	Motor	Motor	Heater Kit	Heater kW	Stages	Heater Amps		•	•	- William	Jource	•	•	
	RLA	LRA	MCC	FLA	FLA	11001011110	230		230	230	230	230	230	230	230	230	230
								Circuit #1 Compressor Circuit			1				1		1
		Source: it and I		ressor		Multi Source:		cuit #2 H		MCA ¹ Amps	MOP ²						
	Circu	it allu i	ieat Ci	iicuits			Circuit #2 Heat Circuit #3 Heat			•	uit #1	Circuit #2			uit #3	Circuit #4	
				I		none		1		29.5	45						JIL #4
						6HK(0,1)6500506	4.4	1	19.1	29.5	45	23.9	25				
						6HK(0,1)6500806	7.1	1	30.9	29.5	45	38.6	40				
						6HK(0,1)6501006	8.8	1	38.3	29.5	45	47.8	50				
						6HK16501306	11.5	2	50.0	29.5	45	62.5	45	23.9	25		
						6HK16501506	13.2	2	57.4	29.5	45	47.8	50	23.9	25		
A42	18	112	28	1.7	5.4	6HK16501806	15.2	2	69.1	29.5	45	57.6	45	28.8	45		
						6HK16502006	17.6	2	76.5	29.5	45	47.8	50	47.8	50		
						6HK26501306	11.5	1	50.0	29.5	45	62.5	70				
						6HK26501506	13.2	1	57.4	29.5	45	71.7	80				
						6HK26501806	15.2	1	69.1	29.5	45	86.4	90				
						6HK26502006	17.6	1	76.5	29.5	45	95.7	100				
						none		<u> </u>		34.4	50	95.1					
						6HK(0,1)6500506	4.4	1	19.1	34.4	50	23.9	25				
						6HK(0,1)6500806	7.1	1	30.9	34.4	50	38.6	40				
						6HK(0,1)6501006	8.8	1	38.3	34.4	50	47.8	50				
					5.4	6HK16501306	11.5	2	50.0	34.4	50	62.5	45	23.9	25		
				1.7		6HK16501506	13.2	2	57.4	34.4	50	47.8	50	23.9	25		
B48	22	117	34			6HK16501806	15.2	2	69.1	34.4	50	57.6	45	28.8	45		
						6HK16502006	17.6	2	76.5	34.4	50	47.8	50	47.8	50		
						6HK26501306	11.5	1	50.0	34.4	50	62.5	70				
						6HK26501506	13.2	1	57.4	34.4	50	71.7	80				
						6HK26501806	15.2	1	69.1	34.4	50	86.4	90				
						6HK26502006	17.6	2	76.5	34.4	50	95.7	100				
						none				39.2	60	95.1					
						6HK(0,1)6500506	4.4	1	19.1	39.2	60	23.9	25				
						6HK(0,1)6500806	7.1	1	30.9	39.2	60	38.6	40				
						6HK(0,1)6501006	8.8	1	38.3	39.2	60	47.8	50				
						6HK16501306	11.5	2	50.0	39.2	60	62.5	45	23.9	25		
						6HK16501506	13.2	2	57.4	39.2	60	47.8	50	23.9	25		
						6HK16501806	15.2	2	69.1	39.2	60	57.6	45	28.8	45		
B60	24	144	38	1.7	7.0	6HK16502006	17.6	2	76.5	39.2	60	47.8	50	47.8	50		
						6HK26501306	11.5	1	50.0	39.2	60	62.5	70				
						6HK26501506	13.2	1	57.4	39.2	60	71.7	80				
						6HK26501806	15.2	1	69.1	39.2	60	86.4	90				
						6HK26502006	17.6	1	76.5	39.2	60	95.7	100				
						6HK16502506	22.0	3	95.7	39.2	60	47.8	50	47.8	50	23.9	25
						6HK26502506		1	95.7	39.2	60	119.6	!	47.0		23.9	20
						0002000	22.0		95.7	39.Z	00	0.611	120				

^{1.} MCA = Minimum Circuit Ampacity.

^{2.} MOP = Maximum Over Current Protection device; must be HACR type circuit breaker or time delay fuse.

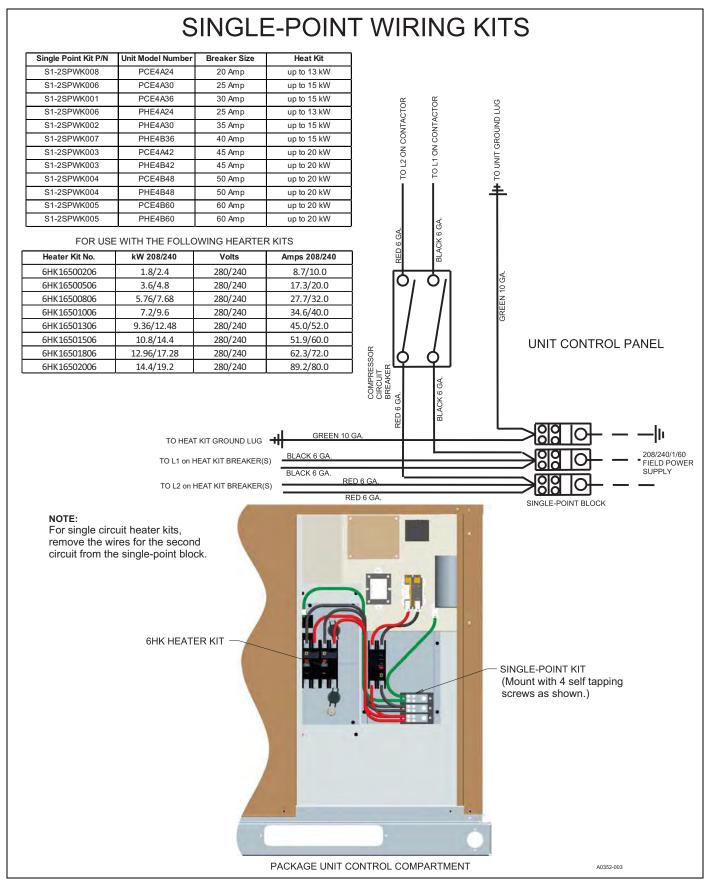


FIGURE 8: Single Point Wiring Kits

Table 8: Physical Data

			MOI	DELS		
NOMINAL TONNAGE	A24	A30	A36	A42	B48	B60
	2.0	2.5	3.0	3.5	4.0	5.0
AHRI Cooling Performance						
Gross Capacity @ AHRI A point (MBH)	23.7	30.1	37.2	43.5	47.7	55.0
AHRI net capacity (MBH)	22.8	29.0	34.6	40.7	45.5	52.5
EER	11.0	11.0	11.0	11.0	11.0	11.0
SEER	14.0	14.0	14.0	14.0	14.0	14.0
Nominal CFM	800	1000	1200	1400	1600	2000
System power (KW)	2.1	2.6	3.2	3.8	4.2	4.8
Refrigerant type	R410A	R410A	R410A	R410A	R410A	R410A
Refrigerant charge (lb-oz)	5-4	9-2	8-3	9-4	14-4	14-2
Dimensions (inches)		•		•		
Length	51-1/4	51-1/4	51-1/4	51-1/4	51-1/4	51-1/4
Width	35-3/4	35-3/4	35-3/4	35-3/4	45-3/4	45-3/4
Height	47	47	47	49	53	55
Operating WT. (lbs.)	343	389	395	466	483	500
Compressors						
Type	Recip	Recip	Recip	Scroll	Scroll	Scroll
Outdoor Coil Data	·	·	·	l		
Face area (Sq. Ft.)	15.3	15.3	15.3	17.3	24.1	26.3
Rows	1	2	2	2	2	2
Fins per inch	22	22	22	22	22	22
Tube diameter	3/8	3/8	3/8	3/8	3/8	3/8
Circuitry Type	Interlaced	Interlaced	Interlaced	Interlaced	Interlaced	Interlaced
Indoor Coil Data						
Face area (Sq. Ft.)	3.4	3.4	3.4	3.4	4.4	4.4
Rows	2	3 3 3			3	3
Fins per inch	16	16	16	16	16	16
Tube diameter	3/8	3/8	3/8	3/8	3/8	3/8
Circuitry Type	Interlaced	Interlaced	Interlaced	Interlaced	Interlaced	Interlaced
Refrigerant control	TXV	TXV	TXV	TXV	TXV	TXV
Outdoor Fan Data						
an diameter (Inch)	24	24	24	24	26	26
Гуре	Prop	Prop	Prop	Prop	Prop	Prop
Drive type	Direct	Direct	Direct	Direct	Direct	Direct
No. speeds	1	1	1	1	1	1
Motor HP each	1/4	1/4	1/4	1/4	1/3	1/3
RPM	850	850	850	850	850	850
Nominal total CFM	2400	2400	2400	2400	3200	3200
Direct Drive Indoor Blower Data	2100	2.00	2100	2100	0200	0200
Fan Size (Inch)	11 x 8	11 x 8	11 x 10	11 x 10	11 x 10	11 x 10
Туре	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Motor HP each	1/2	1/2	1/2	3/4	3/4	1
RPM	1200 Max	1200 Max	1200 Max	1200 Max	1200 Max	1200 Max
Frame size	48	48	48	48	48	48
Filters	40	+0	40	40	70	40
Filter Size	Α	А	Α	Α	В	В
Quantity size	Field-supplied ex ters. For internal	ternal filters must	be sized so as no ack kit is available	t to exceed 300 fpr c. Consult the instr	m air velocity throu	ugh disposable

COMPRESSORS

The compressor used in this product is specifically designed to operate with R-410A Refrigerant and cannot be interchanged.

A CAUTION

This system uses R-410A Refrigerant which operates at higher pressures than R-22. No other refrigerant may be used in this system.

The compressor uses polyolester (POE oil), Mobile 3MA POE. This oil is extremely hygroscopic, meaning it absorbs water readily. POE oil can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. If refrigerant circuit is opened, take all necessary precautions to avoid exposure of the oil to the atmosphere.

A CAUTION

Do not leave the system open to the atmosphere. Unit damage could occur due to moisture being absorbed by the **POE oil** in the system. This type of oil is highly susceptible to moisture absorption

POE (polyolester) compressor lubricants are known to cause long term damage to some synthetic roofing materials.

A CAUTION

Exposure, even if immediately cleaned up, may cause embrittlement (leading to cracking) to occur in one year or more. When performing any service that may risk exposure of compressor oil to the roof, take precautions to protect roofing.

Procedures which risk oil leakage include, but are not limited to, compressor replacement, repairing refrigerant leaks, replacing refrigerant components such as filter drier, pressure switch, metering device or coil

Units are shipped with compressor mountings which are factoryadjusted and ready for operation.

A CAUTION

Do not loosen compressor mounting bolts.

SECTION V: AIRFLOW PERFORMANCE

Table 9: Airflow - Side Duct Application

				Exterr	nal Static Pre	ssure (Inche	es WC)		
Model	Motor Speed	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM
	Low (1)	887	847	802	750	705	664	613	563
	Low/Medium (2)	978	941	898	850	803	759	713	667
A24	Medium (3)	1171	1114	1074	1039	993	949	906	864
	Medium/High (4)	1349	1297	1265	1224	1185	1146	1107	1063
	High (5)	1487	1462	1392	1331	1318	1281	1241	1201
	Low (1)	1076	1020	984	943	903	859	819	779
	Low/Medium (2)	1102	1048	1010	974	934	890	850	810
A30	Medium (3)	1191	1140	1112	1076	1038	1000	958	919
	Medium/High (4)	1201	1225	1187	1151	1118	1080	1041	1002
	High (5)	1370	1329	1283	1271	1209	1176	1143	1109
	Low (1)	1225	1174	1131	1090	1046	993	941	888
	Low/Medium (2)	1259	1209	1166	1126	1084	1032	980	928
A36	Medium (3)	1314	1271	1229	1186	1144	1097	1049	998
	Medium/High (4)	1348	1306	1259	1222	1179	1133	1086	1036
	High (5)	1506	1471	1403	1389	1345	1305	1262	1216
	Low (1)	1436	1382	1342	1304	1262	1220	1179	1131
	Low/Medium (2)	1544	1492	1455	1416	1376	1336	1294	1248
A42	Medium (3)	1573	1523	1484	1445	1408	1367	1327	1279
	Medium/High (4)	1681	1640	1599	1557	1517	1478	1436	1393
	High (5)	1935	1887	1834	1788	1743	1701	1651	1591
	Low (1)	1620	1564	1517	1466	1418	1360	1308	1206
	Low/Medium (2)	1694	1630	1580	1530	1482	1430	1380	1292
B48	Medium (3)	1798	1722	1669	1620	1572	1527	1480	1413
	Medium/High (4)	1835	1758	1703	1653	1604	1558	1511	1442
	High (5)	2146	2085	2025	1960	1872	1862	1798	1735
	Low (1)	1730	1682	1628	1592	1552	1517	1479	1439
	Low/Medium (2)	1858	1807	1749	1710	1667	1629	1589	1546
B60	Medium (3)	2054	1998	1934	1890	1843	1801	1757	1710
	Medium/High (4)	2195	2144	2098	2049	2003	1955	1883	1868
	High (5)	2445	2388	2306	2293	2235	2178	2129	2077

- 1. Airflow tested with dry coil conditions, without air filters, at 230 volts.
- 2. Applications above 0.8" w.c. external static pressure are not recommended.
- 3. Brushless DC high efficiency standard ECM blower motor used for all indoor blower assemblies.
- 4. Minimal variations in airflow performance data results from operating at 208 volts. Data above may be used in those cases.
- 5. Heating applications tested at 0.50" w.c. esp, and cooling applications tested at 0.30" w.c.esp per standards.

Table 10: Airflow - Bottom Duct Application

				Exteri	nal Static Pre	ssure (Inche	es WC)		
Model	Motor Speed	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
		SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM	SCFM
	Low (1)	899	869	827	782	734	685	630	575
	Low/Medium (2)	1033	960	924	879	834	787	735	685
A24	Medium (3)	1186	1133	1095	1056	1016	975	935	891
	Medium/High (4)	1357	1322	1284	1248	1211	1174	1127	1087
	High (5)	1480	1439	1404	1367	1369	1299	1264	1226
	Low (1)	1076	1042	1009	969	930	890	849	808
	Low/Medium (2)	1104	1063	1025	987	947	908	869	830
A30	Medium (3)	1205	1170	1136	1098	1060	1025	985	943
	Medium/High (4)	1285	1251	1213	1179	1141	1104	1065	1027
	High (5)	1406	1375	1341	1306	1271	1236	1198	1163
	Low (1)	1231	1186	1146	1103	1069	1030	977	912
	Low/Medium (2)	1270	1225	1189	1140	1098	1046	1008	960
A36	Medium (3)	1317	1286	1245	1198	1151	1110	1064	1024
	Medium/High (4)	1358	1317	1275	1238	1197	1148	1105	1057
	High (5)	1517	1475	1447	1400	1357	1318	1275	1232
	Low (1)	1455	1414	1379	1335	1294	1254	1212	1160
	Low/Medium (2)	1566	1532	1492	1455	1416	1372	1333	1280
A42	Medium (3)	1565	1530	1491	1458	1419	1381	1336	1290
	Medium/High (4)	1675	1641	1606	1578	1535	1495	1455	1412
	High (5)	1946	1909	1863	1815	1771	1721	1654	1595
	Low (1)	1598	1548	1502	1454	1410	1362	1307	1251
	Low/Medium (2)	1663	1612	1568	1522	1476	1422	1370	1297
B48	Medium (3)	1789	1733	1670	1650	1596	1578	1535	1483
	Medium/High (4)	1931	1814	1808	1736	1673	1650	1597	1519
	High (5)	2131	2058	1998	1949	1892	1840	1788	1728
	Low (1)	1655	1612	1596	1531	1461	1462	1429	1391
	Low/Medium (2)	1766	1720	1667	1629	1632	1539	1537	1498
B60	Medium (3)	1987	1933	1861	1817	1820	1715	1725	1651
	Medium/High (4)	2114	2050	2047	1974	1899	1889	1920	1866
	High (5)	2369	2308	2249	2183	2126	2088	2034	1990

- 1. Airflow tested with dry coil conditions, without air filters, at 230 volts
- 2. Applications above 0.8" w.c. external static pressure are not recommended.
- 3. Brushless DC high efficiency standard ECM blower motor used for all indoor blower assemblies.
- 4. Minimal variations in airflow performance data results from operating at 208 volts. Data above may be used in those cases.
- 5. Heating applications tested at 0.50" w.c. esp, and cooling applications tested at 0.30" w.c. esp per standards.

Table 11: Electric Heat Minimum Supply Air

			Minimum Blower Speed for Electric Heat Heater kW											
Model	Voltage													
		2	5	5 8 10 13 15		18	20	25						
24	208/230-1-60	Low #1	Low #1	Med. Low #2	Med. #3	Med. Hi #4								
30	208/230-1-60	Low #1	Low #1	Low #1	Med. Low #2	Med #3	High #5							
36	208/230-1-60	Low #1	Low #1	Low #1	Low #1	Med. Low #2	High #5							
42	208/230-1-60		Low #1	Low #1	Low #1	Low #1	Med. Low #2	Med. Hi #4	High #5					
48	208/230-1-60		Low #1	Low #1	Low #1	Low #1	Low #1	Med. Low #2	Med. High #4					
60	208/230-1-60		Low #1	Low #1	Low #1	Low #1	Low #1	Low #1	Med. Low #2	Med. High #				

Table 12: Electric Heat Multipliers

Vol	tage	IAN Canadity Modernian 1
Nominal	Applied	kW Capacity Multipliers ¹
240	208	0.75
240	230	0.92

Electric heaters are rated at nominal voltage. Use this table to determine the electric heat capacity for heaters applied at lower voltages.

Table 13: Additional Static Resistance

Size (Tons)	CFM	Wet Indoor Coil	Economizer ¹	Filter/Frame Kit		
, ,	500	0.01	0.00	0.01		
	600	0.01	0.00	0.02		
	700	0.01	0.00	0.04		
	800	0.02	0.01	0.06		
24 (2.0)	900	0.03	0.01	0.08		
	1000	0.04	0.01	0.10		
	1100	0.05	0.01	0.13		
	1200	0.06	0.02	0.16		
	700	0.01	0.00	0.04		
	800	0.02	0.01	0.06		
	900	0.03	0.01	0.08		
30 (2.5)	1000	0.04	0.01	0.10		
	1100	0.05	0.01	0.13		
	1200	0.06	0.02	0.16		
	1300	0.07	0.03	0.17		
	700	0.01	0.00	0.04		
	800	0.02	0.01	0.06		
	900	0.03	0.01	0.08		
22 (2.2)	1000	0.04	0.01	0.10		
36 (3.0)	1100	0.05	0.01	0.13		
	1200	0.06	0.02	0.16		
	1300	0.07	0.03	0.17		
	1400	0.08	0.04	0.18		
	1100	0.02	0.02	0.04		
	1200	0.03	0.02	0.04		
	1300	0.04	0.02	0.05		
	1400	0.05	0.03	0.05		
10 (0.5)	1500	0.06	0.04	0.06		
42 (3.5)	1600	0.07	0.04	0.07		
	1700	0.07	0.04	0.08		
	1800	0.08	0.04	0.09		
	1900	0.09	0.05	0.10		
	2000	0.09	0.05	0.11		
	1100	0.02	0.02	0.04		
	1200	0.03	0.02	0.04		
	1300	0.04	0.02	0.05		
	1400	0.05	0.03	0.05		
40 (4.0)	1500	0.06	0.04	0.06		
48 (4.0)	1600	0.07	0.04	0.07		
	1700	0.07	0.04	0.08		
	1800	0.08	0.04	0.09		
	1900	0.09	0.05	0.10		
	2000	0.09	0.05	0.11		
	1100	0.02	0.02	0.04		
	1200	0.03	0.02	0.04		
	1300	0.04	0.02	0.05		
	1400	0.05	0.03	0.05		
60 (5.0)	1500	0.06	0.04	0.06		
00 (5.0)	1600	0.07	0.04	0.07		
	1700	0.07	0.04	0.08		
	1800	0.08	0.04	0.09		
	1900	0.09	0.05	0.10		
	2000	0.09	0.05	0.11		

The pressure drop through the economizer is greater for 100% outdoor air than for 100% return air. If the resistance of the return air duct is less than 0.25 IWG, the unit will deliver less CFM during full economizer operation.

SECTION VI: OPERATION

The following sequences of operation are based on using a singlestage air conditioning thermostat.

COOLING SEQUENCE OF OPERATION

- On a call for cooling, the wall thermostat sends a 24V "Y" signal to the unit. The unit contactor will close, which energizes the outdoor fan and the compressor. The 24V signal is also sent to the indoor blower motor, which will run at the selected cooling speed.
- When the demand for cooling has been satisfied, the wall thermostat will remove the 24V "Y" signal from the unit. The contactor will open and the outdoor fan and the compressor will stop. The indoor blower has a built-in delay and will continue to run for 60 seconds after the cooling signal has been removed.

HEATING SEQUENCE OF OPERATION (for units which have an optional electric heat kit)

- On a call for heating, the wall thermostat sends a 24V "W" signal to the unit. The indoor blower will then start to run at the selected heating speed. The 24V signal will also go to the sequencer(s) or relays in the electric heat kit and will turn on the electric heating elements.
- When the demand for heating is removed, the wall thermostat will remove the "W" signal. When the 24V signal is removed from the electric heat sequencer, the heating elements will turn off. The indoor blower will continue to run for 60 seconds after the call for heat is removed.

Electric Heat Limit Switch Operation

When the limit switch opens, the heating elements will turn off. The indoor blower will continue to run. The limit switch will automatically reset when the temperature has fallen to a normal level, at which time the heating elements will be turned on again.

Table 14: Thermostat Signals

Signal	State	Function
G	ON	Indoor blower instant on
G	OFF	Indoor blower off after 60-second delay
	ON	Indoor blower instant on
W	5	Electric heat stages on (if so equipped)
VV	OFF	Electric heat stages off (if so equipped)
	5	Indoor blower off after 60-second delay
	ON	Indoor blower instant on in heating speed
G & W	ON	Electric heat stages on (if so equipped)
Gaw	W OFF	Electric heat stages off (if so equipped)
	WOII	Indoor blower switches to continuous fan speed
		Outdoor fan on
	ON	Indoor blower instant on in cooling speed
	ON	Compressor on
G & Y		System operates in cooling mode
		Compressor instant off
	Y OFF	Outdoor fan instant off
		Indoor blower switches to continuous fan speed

^{*} Motor program has 60 second blower off delay on all 5 speed taps.

Filter pressure drop based on standard filter media tested at velocities not to exceed 300 ft/min.

STARTUP

- 1. Check the electrical supply voltage being supplied. Be sure that it is within the specified range on the unit data plate.
- 2. Make sure all electrical connections are tight.
- 3. If unit is connected to 208 volt supply power, the control transformer must be wired accordingly.
- 4. Turn unit electrical power on.
- Set the room thermostat to COOL mode and lower the desired temperature setting lower than the room temperature to create a call for cooling.
- Measure the total system duct static and set the blower motor cooling speed appropriately per airflow performance tables.
- 7. If an optional electric heat kit was installed make sure the W blower speed is set at or above required speed. See Table 11.

8. Make sure all units panels are in place and secured, and that an air filter is installed.

EXTERNAL STATIC PRESSURE SETUP

To measure external static pressure:

- · Measure the supply air static pressure
- · Record this positive number
- · Measure the return air static pressure
- · Record this negative number
- Treat the negative number as a positive and add the two numbers together
- · This is total system static

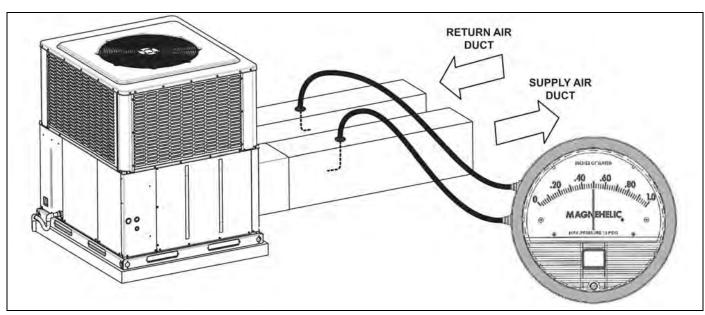


FIGURE 9: Measuring External Static Pressure

SECTION VII: MAINTENANCE NORMAL MAINTENANCE

A WARNING

Prior to any of the following maintenance procedures, shut off all power to the unit, to avoid personal injury.

Periodic maintenance consists of changing or cleaning filters and general cleaning of the outdoor coil.

FILTERS - Inspect once a month. Replace Disposable or clean Permanent Type as necessary. DO NOT replace Permanent Type with Disposable.

MOTORS - Indoor and outdoor fan motors are permanently lubricated and require no maintenance.

OUTDOOR COIL - Dirt should not be allowed to accumulate on the outdoor coil surface or other parts in the air circuit. Cleaning should be as often as necessary to keep the coil clean. If water is used to clean the coil, be sure that the power to the unit is shut off prior to cleaning.

NOTICE

DO NOT use a pressure washer as coil fin damage will occur.

▲ CAUTION

Exercise care when cleaning the coil so that the coil fins are not damaged.

Do not permit the hot outdoor air discharge to be obstructed by overhanging structures or shrubs.

TROUBLESHOOTING

▲ WARNING

Troubleshooting of components necessarily requires opening the electrical control box with the power connected to the unit. Use extreme care when working with live circuit! Check the unit nameplate for the correct range before making any connections with line terminals.

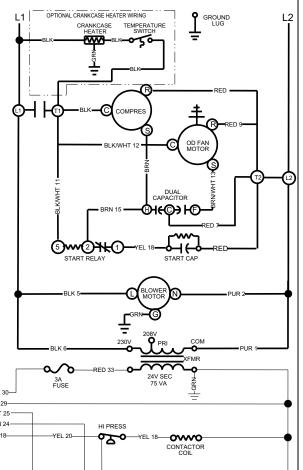
A CAUTION

The wire number or color and terminal designations referred to may vary. Check the wiring label inside the control box access panel for the correct wiring.

SECTION VIII: TYPICAL WIRING DIAGRAMS

CONNECTION WIRING DIAGRAM **COOLING UNIT WITH OR** WITHOUT ELECTRIC HEAT WITH RECIPROCATING COMPRESSOR 208/230-1-60 **CAUTION - OPEN ALL DISCONNECTS** POWER SUPPLY 208/230-1-60 USE COPPER CONDUCTORS ONLY BEFORE SERVICING THIS UNIT OPTIONAL CRANKCASE HEATER CRANKCASE TEMPERATURE HEATER SWITCH FOR WIRING WITH ELECTRIC HEATERS SEE SCHEMATIC ON HEATER ACCESSORY FEMALE CONNECTOR FOR 6HK HEATER KIT \square SINGLE POLE CONTACTOR CONTACTOR BLK/WHT 12 24V COMMON FIRST STAGE RELA ൮ഺ഻഻഻഻഻ഊ൷ഁ൫ GRN 1 LOW VOLTAGE BLK 5 BOX PUR 2 YEL 18 -BLU 29 RED 30 HI PRESS S (LOW) (CONTINUOUS FAN) GRN 24 ID FAN (LOW/MED) THERMOSTAT (MED/HIGH) I (HEATING SPEED) WHT 25 (HIGH) BLU 23 INDOOR BLOWER 60 SECOND OFF DELAY FOR BOTH HEAT & COOL MODES. LINE VOLTAGE ■ FIELD INSTALLED POWER LOW VOLTAGE FIELD INSTALLED CONTROL NOTES: 1. ALL FIELD WIRING TO BE ACCOMPLISHED FOLLOWING CITY, LOCAL 4. MOTORS ARE INHERENTLY PROTECTED. AND/OR NATIONAL CODES IN EFFECT AT THE TIME OF INSTALLATION 5. SEE UNIT NAMEPLATE FOR MAXIMUM FUSE AND/OR CIRCUIT BREAKER OF THE UNIT. SIZE AND MINIMUM CIRCUIT AMPACITY. 2. CAUTION: LABEL ALL WIRES PRIOR TO DISCONNECTION WHEN 6. BLOWER MOTOR SPEED CONNECTIONS SHOWN ARE TYPICAL, BUT SERVICING CONTROLS. WIRING ERRORS CAN CAUSE IMPROPER AND DANGEROUS OPERATION. IF ANY OF THE WIRING, AS SUPPLIED MAY VARY BY MODEL AND APPLICATION. SEE INSTALLATION MANUAL WITH THE UNIT, MUST BE REMOVED, IT MUST BE REPLACED WITH FOR PROPER MOTOR SPEED INFORMATION FOR EACH APPLICATION TO TYPE 105 C. 600 VOLT WIRE OR EQUIVALENT CLEARLY RENUMBERED OBTAIN APPROX. 400 CFM/TON IN COOLING FOR IDENTIFICATION. VERIFY PROPER OPERATION AFTER SERVICING. 3. FACTORY WIRED FOR 230 VOLT SUPPLY POWER. FOR 208 VOLT, MOVE BLACK WIRES FROM THE 230 TO THE 208 VOLT TAP ON THE

FIGURE 10: Connection Wiring Diagram - 2 to 3 Ton Models


LADDER WIRING DIAGRAM COOLING UNIT WITH OR WITHOUT ELECTRIC HEAT

WITH RECIPROCATING COMPRESSOR 208/230-1-60

CAUTION - OPEN ALL DISCONNECTS BEFORE SERVICING THIS UNIT

NOTES:

- ALL FIELD WIRING TO BE ACCOMPLISHED FOLLOWING CITY, LOCAL AND/OR NATIONAL CODES IN EFFECT AT THE TIME OF INSTALLATION OF THE UNIT.
- 2. CAUTION: LABEL ALL WIRES PRIOR TO DISCONNECTION WHEN SERVICING CONTROLS. WIRING ERRORS CAN CAUSE IMPROPER AND DANGEROUS OPERATION. IF ANY OF THE WIRING, AS SUPPLIED WITH THE UNIT, MUST BE REMOVED, IT MUST BE REPLACED WITH TYPE 105 C. 600 VOLT WIRE OR EQUIVALENT CLEARLY RENUMBERED FOR IDENTIFICATION. VERIFY PROPER OPERATION AFTER SERVICING.
- 3. FACTORY WIRED FOR 230 VOLT SUPPLY POWER. FOR 208 VOLT, MOVE BLACK WIRES FROM THE 230 TO THE 208 VOLT TAP ON THE TRANSFORMER.
- 4. MOTORS ARE INHERENTLY PROTECTED.
- 5. SEE UNIT NAMEPLATE FOR MAXIMUM FUSE AND/OR CIRCUIT BREAKER SIZE AND MINIMUM CIRCUIT AMPACITY.
- 6. BLOWER MOTOR SPEED CONNECTIONS SHOWN ARE TYPICAL, BUT MAY VARY BY MODEL AND APPLICATION. SEE INSTALLATION MANUAL FOR PROPER MOTOR SPEED INFORMATION FOR EACH APPLICATION TO OBTAIN APPROX. 400 CFM/TON IN COOLING.

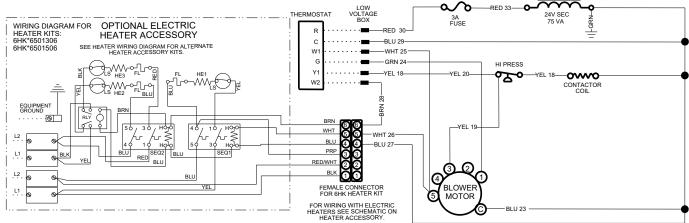


FIGURE 11: Ladder Wiring Diagram - 2 to 3 Ton Models

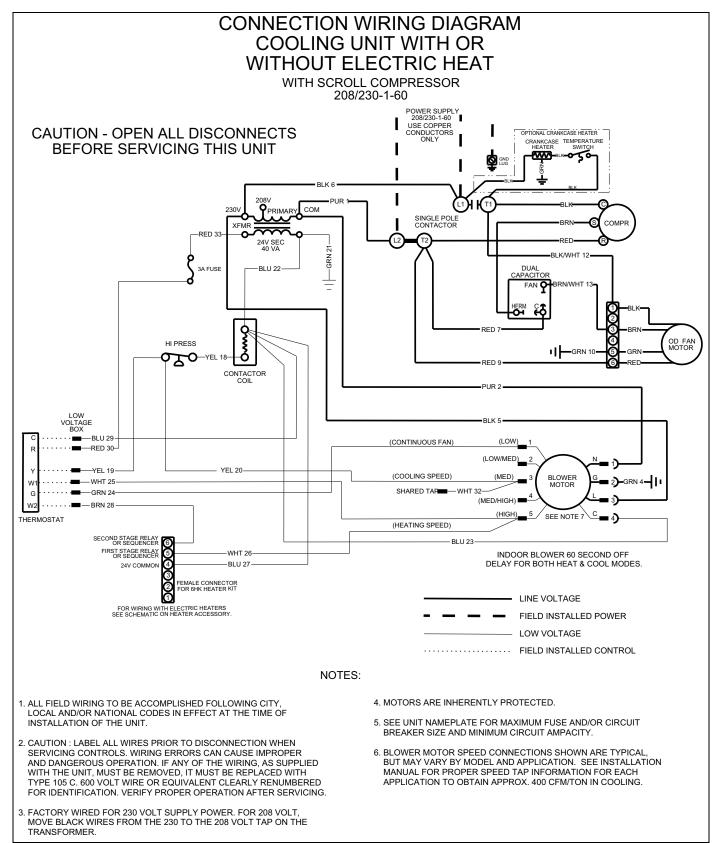


FIGURE 12: Connection Wiring Diagram - 3.5 to 5 Ton Models

GROUND LUG L2

OPTIONAL CRANKCASE HEATER WIRING

CRANKCASE

PWW

BI K/WH

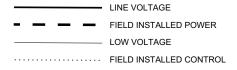
3A FUSE

TEMPERATURE

фн⇔не

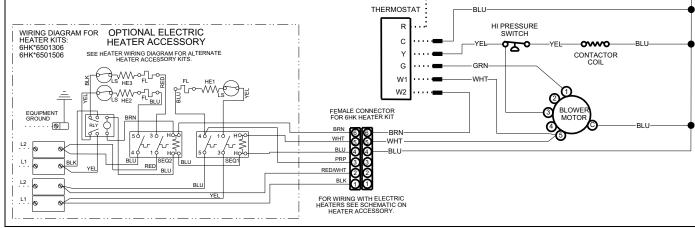
COM

XFMR


208V

24V SEC 40 VA

LADDER WIRING DIAGRAM COOLING UNIT WITH OR WITHOUT ELECTRIC HEAT


WITH SCROLL COMPRESSOR 208/230-1-60

CAUTION - OPEN ALL DISCONNECTS BEFORE SERVICING THIS UNIT

NOTES:

- 1. ALL FIELD WIRING TO BE ACCOMPLISHED FOLLOWING CITY, LOCAL AND/OR NATIONAL CODES IN EFFECT AT THE TIME OF INSTALLATION OF THE UNIT.
- 2. CAUTION: LABEL ALL WIRES PRIOR TO DISCONNECTION WHEN SERVICING CONTROLS. WIRING ERRORS CAN CAUSE IMPROPER AND DANGEROUS OPERATION. IF ANY OF THE WIRING, AS SUPPLIED WITH THE UNIT, MUST BE REMOVED, IT MUST BE REPLACED WITH TYPE 105 C. 600 VOLT WIRE OR EQUIVALENT CLEARLY RENUMBERED FOR IDENTIFICATION. VERIFY PROPER OPERATION AFTER SERVICING.
- 3. FACTORY WIRED FOR 230 VOLT SUPPLY POWER. FOR 208 VOLT, MOVE BLACK WIRES FROM THE 230 TO THE 208 VOLT TAP ON THE TRANSFORMER.
- 4. MOTORS ARE INHERENTLY PROTECTED.
- 5. SEE UNIT NAMEPLATE FOR MAXIMUM FUSE AND/OR CIRCUIT BREAKER SIZE AND MINIMUM CIRCUIT AMPACITY.
- 6. BLOWER MOTOR SPEED CONNECTIONS SHOWN ARE TYPICAL, BUT MAY VARY BY MODEL AND APPLICATION. SEE INSTALLATION MANUAL FOR PROPER SPEED TAP INFORMATION FOR EACH APPLICATION TO OBTAIN APPROX. 400 CFM/TON IN COOLING.

LOW— VOLTAGE BOX

FIGURE 13: Ladder Wiring Diagram - 3.5 to 5 Ton Models

R-410A QUICK REFERENCE GUIDE

Refer to Installation Instructions for specific installation requirements

- R-410A refrigerant operates at 50 70 percent higher pressures than R-22. Be sure that servicing
 equipment and replacement components are designed to operate with R-410A.
- R-410A refrigerant cylinders are rose colored.
- Recovery cylinder service pressure rating must be 400 psig, DOT 4BA400, or DOT BW400.
- Recovery equipment must be rated for R-410A.
- <u>DO NOT</u> use R-410A service equipment on R-22 systems. All hoses, gages, recovery cylinders, charging cylinders and recovery equipment must be dedicated for use on R-410A systems only.
- Manifold sets must be at least 700 psig high side, and 180 psig low side, with 550 psig retard.
- All hoses must have a service pressure rating of 800 psig.
- Leak detectors must be designed to detect HFC refrigerants.
- Systems must be charged with liquid refrigerant. Use a commercial type metering device in the manifold hose.
- R-410A can only be used with POE type oils.
- POE type oils rapidly absorb moisture from the atmosphere.
- Vacuum pumps will **not** remove moisture from R-410A refrigerant oils.
- <u>Do not use liquid line driers with a rated working pressure rating less than 600 psig.</u>
- <u>Do not install suction line driers in the liquid line.</u>
- A liquid line drier is required on every unit.
- <u>Do not use a R-22 TXV. If a TXV is to be used, it must be a R-410A TXV.</u>
- Never open system to atmosphere when under a vacuum.
- If system must be opened for service, evacuate system then break the vacuum with dry nitrogen and replace all filter driers.

FIGURE 14: R-410A Quick Reference Guide

SECTION IX: START UP SHEET

Print Form Residential Package Unit Cooling With Electric Heat Start-Up Sheet Proper start-up is critical to customer comfort and equipment longevity												
Start-Up Date	Company N	ame		St	tart-Up	Technician						
Owner Information	<u></u>											
Name	A	ddress				Daytime Ph	one					
City		Stat	e or Province			Zip or Posta	al Code					
Equipment Data												
Unit Model #			Unit Serial #									
General Information (Check all that apply)												
Residential New Construction Roof level Down flow												
○ Commercial	○ Re	trofit		○ Grade lev	el		○ Side	e flow				
Unit Location and Connections (Check all that apply)												
Unit is level and installed on: Slab Roof curb Duct connections are complete: Supply Return												
Condensate drain properly connected per the installation instructions Condensate trap has been primed with water												
Filters												
Filters installed Nur												
Additional Kits & A	Accessories	Inst	alled (Check all tha	at apply)								
Refrigerant safety kit	Low amb	ient ki	t 🔲 Anti-recycle tim	ner 🗌 Cranl	k case h	eater \Box F	ilter fran	ne kit				
☐ Transformer kit	☐ Economiz	zer	Roof curb kit	☐ Burgl	lar bar k	it 🗌 H	ail guard	d kit				
Manual fresh air damp	oer kit 🔲 Mo	otorize	d fresh air damper kit									
Electrical Connecti	ions & Insp	ectio	n (Check all that ap	ply)								
○ Single phase ○ Th	ree phase (208	volts AC 23	0 volt AC	\circ	460 volts AC	•	○ 575 volts	AC			
Inspect wires and elec	trical connection	ns	Transformer wire	d properly for	primar	y supply volt	age 🗀	Ground cor	nected			
Low voltage present a	at control board	"R & C	." Meas	ured voltage "	'R" and "	'C" outdoor u	ınit cont	rol board				
Line voltage present a	at disconnect	Meas	ured voltage "L1 to L2	2"	"L2 t	o L3"		"L1 to L3"				
Compressor amperes "L1"	" "L2	2"	"L3"	Total a	amperes	s "L1"	"L2"	"L3	"			
○ Single stage compress	sor \(\) Two	stage	compressor				1					
Air Flow Setup / Co	ooling											
		C	OOL OA	ОВ		○ C		○ D				
	○ ECM	AD	JUST OA	ОВ		○ C		(D				
Blower Type &		DE	ELAY OA	ОВ				(D				
Set-Up	○ X-13	O 1	<u></u>	<u></u>		<u> </u>		O 5				
ост ор	○ PSC	() Lo	ow	ow () Me	edium	○ Med	lium Hig	ıh (High				
Supply static (inches of w	Г		Supply air dry bulb te	Г				temperature				
Return static (inches of w	ater column)		Return air dry bulb te	mperature		Return air we	et bulb t	emperature				
Total external static press	sure [Temperature drop			Supply air w	et bulb t	emperature				

Ref	rigera	nt Char	ge and	d Metering	Device									
0	R-410A	C R	-22	Data plate	- lbs / Oz		Suction line t	empe	ratur	e	Discharge pressure			
0	TXV	Fixed	Orifice	Dischar	ge line		Suction p	ressu	re		Liquid	d line tem	perature	ž
T	(V# / Oı	ifice size		temper			Super	heat			Subcooling			
Elec	ctric H	leat												
Elect	ric heat	kit - Mo	del numl	ber			Serial number					Rat	ed KW	
\circ	Single	e Phase	Ma	easured Amper	Н	leater 1		Heat	er 2		He			
0	Three	Phase	IVIE	easureu Ampei		leater 4		Heat	er 5			Heater 6		
N	umber			4 157.16	Н	leater 1		Heat	er 2			Heater 3		
	elemen	ts	N	Measured Volta	ge Heater 4			Heat	er 5		Heater 6			
		return air			Heating					Air tempera	ature	rise		
		temperatu			dry bulb te	emperatu	ıre					L		
		Job Sit												
				indoor and out	door debris	removed	d from job site							
					avalor from	410 0 410 0					ب م ا ما م			
	-		_		•		_				obier	115		
				Joding Cycles i	ioni the thei	iiiostat,	nothing and con	ecung	ally	problems				
				vner's manual										
1					t owner									
						ole) to ow	ner							
1-	-						oment mainten	ance						
Cor	nmen	ts and A	Additio	nal Job De	tails									
Unit	All pane t Ope Operate Operate Provide Explain Explain Explain	ducation owner with operation thermosta	en instal nd Cyc hrough chrough chro	cle Test continuous fan cooling cycles f vner's manual m to equipmen d programming	rom the thei it owner g (if applicab	rmostat,		recting			obler	ms		

Subject to change without notice. Published in U.S.A. Copyright © 2015 by Johnson Controls, Inc. All rights reserved.